重磅推荐
【产品特色】


【编辑推荐】

《深度学习》编辑推荐:深度学习是机器学习的一个分支,它能够使计算机通过层次概念来学习经验和理解世界。因为计算机能够从经验中获取知识,所以不需要人类来形式化地定义计算机需要的所有知识。层次概念允许计算机通过构造简单的概念来学习复杂的概念,而这些分层的图结构将具有很深的层次。本书会介绍深度学习领域的许多主题。

本书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。zui后,本书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型。

《深度学习》这本书既可以被本科生或研究生用于规划其学术界或工业界生涯,也适用于希望在各种产品或平台上开始使用深度学习技术的软件工程师。作者在本书的配套网站上为读者和教师提供了补充资料。中文版读者可以访问人民邮电出版社异步社区www.epubit.com.cn获取相关信息。

封面特色:
由艺术家Daniel Ambrosi提供的中央公园杜鹃花步道梦幻景观。在Ambrosi的亿级像素全景图上,应用Joseph Smarr(Google)和Chirs Lamb(NVIDIA)修改后的Google DeepDream开源程序,创造了Daniel Ambrosi的“幻景”。

《动手学深度学习》编辑推荐:目前市面上有关深度学习介绍的书籍大多可分两类,一类侧重方法介绍,另一类侧重实践和深度学习工具的介绍。本书同时覆盖方法和实践。本书不仅从数学的角度阐述深度学习的技术与应用,还包含可运行的代码,为读者展示如何在实际中解决问题。为了给读者提供一种交互式的学习体验,本书不但提供免费的教学视频和讨论区,而且提供可运行的Jupyter记事本文件,充分利用Jupyter记事本能将文字、代码、公式和图像统一起来的优势。这样不仅直接将数学公式对应成实际代码,而且可以修改代码、观察结果并及时获取经验,从而带给读者全新的、交互式的深度学习的学习体验。

本书面向希望了解深度学习,特别是对实际使用深度学习感兴趣的大学生、工程师和研究人员。本书不要求读者有任何深度学习或者机器学习的背景知识,读者只需具备基本的数学和编程知识,如基础的线性代数、微分、概率及Python编程知识。本书的附录中提供了书中涉及的主要数学知识,供读者参考。

本书的英文版Dive into Deep Learning是加州大学伯克利分校2019年春学期“Introduction to Deep Learning”(深度学习导论)课程的教材。截至2019年春学期,本书中的内容已被全球15 所知名大学用于教学。本书的学习社区、免费教学资源(课件、教学视频、更多习题等),以及用于本书学习和教学的免费计算资源(仅限学生和老师)的申请方法在本书配套网站zh.d2l.ai上发布。读者在阅读本书的过程中,如果对书中某节内容有疑惑,也可以扫一扫书中对应的二维码寻求帮助。深度学习编辑推荐AI圣经!深度学习领域奠基性的经典畅销书!长期位居美国亚马逊AI和机器学习类图书榜首!所有数据科学家和机器学习从业者的图书!特斯拉CEO埃隆·马斯克


【内容简介】

《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。
《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。

《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以下载并运行的 Jupyter记事本,它将文字、公式、图像、代码和运行结果结合在了一起。此外,读者还可以访问并参与书中内容的讨论。
全书的内容分为3个部分:*部分介绍深度学习的背景,提供预备知识,并包括深度学习*基础的概念和技术;第二部分描述深度学习计算的重要组成部分,还解释近年来令深度学习在多个领域大获成功的卷积神经网络和循环神经网络;第三部分评价优化算法,检验影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。
本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程或附录中描述的线性代数、微分和概率基础。


【作者简介】

《深度学习》作者简介:
Ian Goodfellow,谷歌公司(Google) 的研究科学家,2014 年蒙特利尔大学机器学*。他的研究兴趣涵盖大多数深度学习主题,特别是生成模型以及机器学习的安全和隐私。Ian Goodfellow 在研究对抗样本方面是一位有影响力的早期研究者,他发明了生成式对抗网络,在深度学习领域贡献卓 越。

Yoshua Bengio,蒙特利尔大学计算机科学与运筹学系(DIRO) 的教授,蒙特利尔学习算法研究所(MILA) 的负责人,CIFAR 项目的共同负责人,加拿大统计学习算法研究主席。Yoshua Bengio 的主要研究目标是了解产生智力的学习原则。他还教授“机器学习”研究生课程(IFT6266),并培养了一大批研究生和博士后。

Aaron Courville,蒙特利尔大学计算机科学与运筹学系的助理教授,也是LISA 实验室的成员。目前他的研究兴趣集中在发展深度学习模型和方法,特别是开发概率模型和新颖的推断方法。Aaron Courville 主要专注于计算机视觉应用,在其他领域,如自然语言处理、音频信号处理、语音理解和其他AI 相关任务方面也有所研究。

中文版审校者简介
张志华,北京大学数学科学学院统计学教授,北京大学大数据研究中心和北京大数据研究院数据科学教授,主要从事机器学习和应用统计学的教学与研究工作。

译者简介
赵申剑,上海交通大学计算机系硕士研究生,研究方向为数值优化和自然语言处理。
黎彧君,上海交通大学计算机系博士研究生,研究方向为数值优化和强化学习。
符天凡,上海交通大学计算机系硕士研究生,研究方向为贝叶斯推断。
李凯,上海交通大学计算机系博士研究生,研究方向为博弈论和强化学习。

《动手学深度学习》作者介绍:阿斯顿·张(Aston Zhang)
亚马逊应用科学家,美国伊利诺伊大学香槟分校计算机科学博士,统计学和计算机科学双硕士。他专注于机器学习的研究,并在数个学术会议发表过论文。他担任过NeurIPS、ICML、KDD、WWW、WSDM、SIGIR、AAAI 等学术会议的程序委员或审稿人以及Frontiers in Big Data 期刊的编委。

李沐(Mu Li)
亚马逊首席科学家(Principal Scientist),加州大学伯克利分校客座助理教授,美国卡内基梅隆大学计算机系博士。他专注于分布式系统和机器学习算法的研究。他是深度学习框架MXNet 的作者之一。他曾任机器学习创业公司Marianas Labs 的CTO 和百度深度学习研究院的主任研发架构师。他在理论、机器学习、应用和操作系统等多个领域的*学术会议(包括FOCS、ICML、NeurIPS、AISTATS、CVPR、KDD 、WSDM、OSDI)上发表过论文。

扎卡里·C. 立顿(Zachary C. Lipton)
亚马逊应用科学家,美国卡内基梅隆大学助理教授,美国加州大学圣迭戈分校博士。他专注于机器学习算法及其社会影响的研究,特别是在时序数据与序列决策上的深度学习。这类工作有着广泛的应用场景,包括医疗诊断、对话系统和产品推荐。他创立了博客“Approximately Correct”(approximatelycorrect.com)。

亚历山大·J. 斯莫拉(Alexander J. Smola)
亚马逊副总裁/ 杰出科学家,德国柏林工业大学计算机科学博士。他曾在澳大利亚国立大学、美国加州大学伯克利分校和卡内基梅隆大学任教。他发表了超过200 篇学术论文,并著有5 本书,其论文及书被引用超过10 万次。他的研究兴趣包括深度学习、贝叶斯非参数、核方法、统计建模和可扩展算法。


【目录】

动手学深度学习目录:
对本书的赞誉
前言
如何使用本书
资源与支持
主要符号表
第 1 章 深度学习简介 1
1.1 起源 2
1.2 发展 4
1.3 成功案例 6
1.4 特点 7
小结 8
练习 8
第 2 章 预备知识 9
2.1 获取和运行本书的代码 9
2.1.1 获取代码并安装运行环境 9
2.1.2 更新代码和运行环境 11
2.1.3 使用GPU版的MXNet 11
小结12
练习12
2.2 数据操作 12
2.2.1 创建NDArray 12
2.2.2 运算 14
2.2.3 广播机制 16
2.2.4 索引 17
2.2.5 运算的内存开销 17
2.2.6 NDArray和NumPy相互变换18
小结19
练习19
2.3 自动求梯度 19
2.3.1 简单例子 19AL34
2.3.2 训练模式和预测模式 20
2.3.3 对Python控制流求梯度 20
小结21
练习21
2.4 查阅文档 21
2.4.1 查找模块里的所有函数和类 21
2.4.2 查找特定函数和类的使用 22
2.4.3 在MXNet网站上查阅 23
小结 24
练习 24
第3 章 深度学习基础 25
3.1 线性回归 25
3.1.1 线性回归的基本要素 25
3.1.2 线性回归的表示方法 28
小结 30
练习 30
3.2 线性回归的从零开始实现 30
3.2.1 生成数据集 30
3.2.2 读取数据集 32
3.2.3 初始化模型参数 32
3.2.4 定义模型 33
3.2.5 定义损失函数 33
3.2.6 定义优化算法 33
3.2.7 训练模型 33
小结 34
练习 34
3.3 线性回归的简洁实现 35
3.3.1 生成数据集 35
3.3.2 读取数据集 35
3.3.3 定义模型 36
3.3.4 初始化模型参数 36
3.3.5 定义损失函数 37
3.3.6 定义优化算法 37
3.3.7 训练模型 37
小结 38
练习 38
3.4 softmax回归 38
3.4.1 分类问题 38
3.4.2 softmax回归模型 39
3.4.3 单样本分类的矢量计算表达式 40
3.4.4 小批量样本分类的矢量计算表达式 40
3.4.5 交叉熵损失函数 41
3.4.6 模型预测及评价 42
小结 42
练习 42
3.5 图像分类数据集(Fashion-MNIST) 42
3.5.1 获取数据集 42
3.5.2 读取小批量 44
小结 45
练习 45
3.6 softmax回归的从零开始实现 45
3.6.1 读取数据集 45
3.6.2 初始化模型参数 45
3.6.3 实现softmax运算 46
3.6.4 定义模型 46
3.6.5 定义损失函数 47
3.6.6 计算分类准确率 47
3.6.7 训练模型 48
3.6.8 预测 48
小结 49
练习 49
3.7 softmax回归的简洁实现 49
3.7.1 读取数据集 49
3.7.2 定义和初始化模型 50
3.7.3 softmax和交叉熵损失函数 50
3.7.4 定义优化算法 50
3.7.5 训练模型 50
小结 50
练习 50
3.8 多层感知机 51
3.8.1 隐藏层 51
3.8.2 激活函数 52
3.8.3 多层感知机 55
小结 55
练习 55
3.9 多层感知机的从零开始实现 56
3.9.1 读取数据集 56
3.9.2 定义模型参数 56
3.9.3 定义激活函数 56
3.9.4 定义模型 56
3.9.5 定义损失函数 57
3.9.6 训练模型 57
小结 57
练习 57
3.10 多层感知机的简洁实现 57
3.10.1 定义模型 58
3.10.2 训练模型 58
小结 58
练习 58
3.11 模型选择、欠拟合和过拟合 58
3.11.1 训练误差和泛化误差 59
3.11.2 模型选择 59
3.11.3 欠拟合和过拟合 60
3.11.4 多项式函数拟合实验 61
小结 65
练习 65
3.12 权重衰减 65
3.12.1 方法 65
3.12.2 高维线性回归实验 66
3.12.3 从零开始实现 66
3.12.4 简洁实现 68
小结 70
练习 70
3.13 丢弃法 70
3.13.1 方法 70
3.13.2 从零开始实现 71
3.13.3 简洁实现 73
小结 74
练习 74
3.14 正向传播、反向传播和计算图 74
3.14.1 正向传播 74
3.14.2 正向传播的计算图 75
3.14.3 反向传播 75
3.14.4 训练深度学习模型 76
小结 77
练习 77
3.15 数值稳定性和模型初始化 77
3.15.1 衰减和爆炸 77
3.15.2 随机初始化模型参数 78
小结 78
练习 79
3.16 实战Kaggle比赛:房价预测 79
3.16.1 Kaggle比赛 79
3.16.2 读取数据集 80
3.16.3 预处理数据集 81
3.16.4 训练模型 82
3.16.5 k 折交叉验证 82
3.16.6 模型选择 83
3.16.7 预测并在Kaggle提交结果 84
小结 85
练习 85
第4 章 深度学习计算 86
4.1 模型构造 86
4.1.1 继承Block类来构造模型 86
4.1.2 Sequential类继承自Block类 87
4.1.3 构造复杂的模型 88
小结 89
练习 90
4.2 模型参数的访问、初始化和共享 90
4.2.1 访问模型参数 90
4.2.2 初始化模型参数 92
4.2.3 自定义初始化方法 93
4.2.4 共享模型参数 94
小结 94
练习 94
4.3 模型参数的延后初始化 95
4.3.1 延后初始化 95
4.3.2 避免延后初始化 96
小结 96
练习 97
4.4 自定义层 97
4.4.1 不含模型参数的自定义层 97
4.4.2 含模型参数的自定义层 98
小结 99
练习 99
4.5 读取和存储 99
4.5.1 读写NDArray 99
4.5.2 读写Gluon模型的参数 100
小结 101
练习 101
4.6 GPU计算 101
4.6.1 计算设备 102
4.6.2 NDArray的GPU计算 102
4.6.3 Gluon的GPU计算 104
小结 105
练习 105
第5 章 卷积神经网络 106
5.1 二维卷积层 106
5.1.1 二维互相关运算 106
5.1.2 二维卷积层 107
5.1.3 图像中物体边缘检测 108
5.1.4 通过数据学习核数组 109
5.1.5 互相关运算和卷积运算 109
5.1.6 特征图和感受野 110
小结 110
练习 110
5.2 填充和步幅 111
5.2.1 填充 111
5.2.2 步幅 112
小结 113
练习 113
5.3 多输入通道和多输出通道 114
5.3.1 多输入通道 114
5.3.2 多输出通道 115
5.3.3 1×1卷积层 116
小结 117
练习 117
5.4 池化层 117
5.4.1 二维*池化层和平均池化层 117
5.4.2 填充和步幅 119
5.4.3 多通道 120
小结 120
练习 121
5.5 卷积神经网络(LeNet) 121
5.5.1 LeNet模型 121
5.5.2 训练模型 122
小结 124
练习 124
5.6 深度卷积神经网络(AlexNet) 124
5.6.1 学习特征表示 125
5.6.2 AlexNet 126
5.6.3 读取数据集 127
5.6.4 训练模型 128
小结 128
练习 129
5.7 使用重复元素的网络(VGG) 129
5.7.1 VGG块 129
5.7.2 VGG网络 129
5.7.3 训练模型 130
小结 131
练习 131
5.8 网络中的网络(NiN) 131
5.8.1 NiN块 131
5.8.2 NiN模型 132
5.8.3 训练模型 133
小结 134
练习 134
5.9 含并行连结的网络(GoogLeNet) 134
5.9.1 Inception块 134
5.9.2 GoogLeNet模型 135
5.9.3 训练模型 137
小结 137
练习 137
5.10 批量归一化 138
5.10.1 批量归一化层 138
5.10.2 从零开始实现 139
5.10.3 使用批量归一化层的LeNet 140
5.10.4 简洁实现 141
小结 142
练习 142
5.11 残差网络(ResNet) 143
5.11.1 残差块 143
5.11.2 ResNet模型 145
5.11.3 训练模型 146
小结 146
练习 146
5.12 稠密连接网络(DenseNet) 147
5.12.1 稠密块 147
5.12.2 过渡层 148
5.12.3 DenseNet模型 148
5.12.4 训练模型 149
小结 149
练习 149
第6 章 循环神经网络 150
6.1 语言模型 150
6.1.1 语言模型的计算 151
6.1.2 n 元语法 151
小结 152
练习 152
6.2 循环神经网络 152
6.2.1 不含隐藏状态的神经网络 152
6.2.2 含隐藏状态的循环神经网络 152
6.2.3 应用:基于字符级循环神经网络的语言模型 154
小结 155
练习 155
6.3 语言模型数据集(歌词) 155
6.3.1 读取数据集 155
6.3.2 建立字符索引 156
6.3.3 时序数据的采样 156
小结 158
练习 159
6.4 循环神经网络的从零开始实现 159
6.4.1 one-hot向量 159
6.4.2 初始化模型参数 160
6.4.3 定义模型 160
6.4.4 定义预测函数 161
6.4.5 裁剪梯度 161
6.4.6 困惑度 162
6.4.7 定义模型训练函数 162
6.4.8 训练模型并创作歌词 163
小结 164
练习 164
6.5 循环神经网络的简洁实现 165
6.5.1 定义模型 165
6.5.2 训练模型 166
小结 168
练习 168
6.6 通过时间反向传播 168
6.6.1 定义模型 168
6.6.2 模型计算图 169
6.6.3 方法 169
小结 170
练习 170
6.7 门控循环单元(GRU) 170
6.7.1 门控循环单元 171
6.7.2 读取数据集 173
6.7.3 从零开始实现 173
6.7.4 简洁实现 175
小结 176
练习 176
6.8 长短期记忆(LSTM) 176
6.8.1 长短期记忆 176
6.8.2 读取数据集 179
6.8.3 从零开始实现 179
6.8.4 简洁实现 181
小结 181
练习 182
6.9 深度循环神经网络 182
小结 183
练习 183
6.10 双向循环神经网络 183
小结 184
练习 184
第7 章 优化算法 185
7.1 优化与深度学习 185
7.1.1 优化与深度学习的关系 185
7.1.2 优化在深度学习中的挑战 186
小结 188
练习 189
7.2 梯度下降和随机梯度下降 189
7.2.1 一维梯度下降 189
7.2.2 学习率 190
7.2.3 多维梯度下降 191
7.2.4 随机梯度下降 193
小结 194
练习 194
7.3 小批量随机梯度下降 194
7.3.1 读取数据集 195
7.3.2 从零开始实现 196
7.3.3 简洁实现 198
小结 199
练习 199
7.4 动量法 200
7.4.1 梯度下降的问题 200
7.4.2 动量法 201
·6· 目 录
7.4.3 从零开始实现 203
7.4.4 简洁实现 205
小结 205
练习 205
7.5 AdaGrad算法206
7.5.1 算法 206
7.5.2 特点 206
7.5.3 从零开始实现 208
7.5.4 简洁实现 209
小结 209
练习 209
7.6 RMSProp算法 209
7.6.1 算法 210
7.6.2 从零开始实现 211
7.6.3 简洁实现 212
小结 212
练习 212
7.7 AdaDelta算法 212
7.7.1 算法 212
7.7.2 从零开始实现 213
7.7.3 简洁实现 214
小结 214
练习 214
7.8 Adam算法 215
7.8.1 算法 215
7.8.2 从零开始实现 216
7.8.3 简洁实现 216
小结 217
练习 217
第8 章 计算性能 218
8.1 命令式和符号式混合编程 218
8.1.1 混合式编程取两者之长 220
8.1.2 使用HybridSequential类构造模型 220
8.1.3 使用HybridBlock类构造模型 222
小结 224
练习 224
8.2 异步计算 224
8.2.1 MXNet中的异步计算 224
8.2.2 用同步函数让前端等待计算结果 226
8.2.3 使用异步计算提升计算性能 226
8.2.4 异步计算对内存的影响 227
小结 229
练习 229
8.3 自动并行计算 229
8.3.1 CPU和GPU的并行计算 230
8.3.2 计算和通信的并行计算 231
小结 231
练习 231
8.4 多GPU计算 232
8.4.1 数据并行 232
8.4.2 定义模型 233
8.4.3 多GPU之间同步数据 234
8.4.4 单个小批量上的多GPU训练 236
8.4.5 定义训练函数 236
8.4.6 多GPU训练实验 237
小结 237
练习 237
8.5 多GPU计算的简洁实现 237
8.5.1 多GPU上初始化模型参数 238
8.5.2 多GPU训练模型 239
小结 241
练习 241
第9 章 计算机视觉 242
9.1 图像增广242
9.1.1 常用的图像增广方法 243
9.1.2 使用图像增广训练模型 246
小结 250
练习 250
9.2 微调 250
热狗识别 251
小结 255
练习 255
目 录 ·7·
9.3 目标检测和边界框 255
边界框 256
小结 257
练习 257
9.4 锚框 257
9.4.1 生成多个锚框 257
9.4.2 交并比 259
9.4.3 标注训练集的锚框 260
9.4.4 输出预测边界框 263
小结 265
练习 265
9.5 多尺度目标检测 265
小结 268
练习 268
9.6 目标检测数据集(皮卡丘) 268
9.6.1 获取数据集 269
9.6.2 读取数据集 269
9.6.3 图示数据 270
小结 270
练习 271
9.7 单发多框检测(SSD) 271
9.7.1 定义模型 271
9.7.2 训练模型 275
9.7.3 预测目标 277
小结 278
练习 278
9.8 区域卷积神经网络(R-CNN)系列280
9.8.1 R-CNN 280
9.8.2 Fast R-CNN 281
9.8.3 Faster R-CNN 283
9.8.4 Mask R-CNN 284
小结 285
练习 285
9.9 语义分割和数据集 285
9.9.1 图像分割和实例分割 285
9.9.2 Pascal VOC2012语义分割数据集 286
小结 290
练习 290
9.10 全卷积网络(FCN) 290
9.10.1 转置卷积层 291
9.10.2 构造模型 292
9.10.3 初始化转置卷积层 294
9.10.4 读取数据集 295
9.10.5 训练模型 296
9.10.6 预测像素类别 296
小结 297
练习 297
9.11 样式迁移 298
9.11.1 方法 298
9.11.2 读取内容图像和样式图像 299
9.11.3 预处理和后处理图像 300
9.11.4 抽取特征 301
9.11.5 定义损失函数 302
9.11.6 创建和初始化合成图像 303
9.11.7 训练模型 304
小结 306
练习 306
9.12 实战Kaggle比赛:图像
分类(CIFAR-10)306
9.12.1 获取和整理数据集 307
9.12.2 图像增广 310
9.12.3 读取数据集 310
9.12.4 定义模型 311
9.12.5 定义训练函数 312
9.12.6 训练模型 312
9.12.7 对测试集分类并在Kaggle
提交结果 313
小结 313
练习 313
9.13 实战Kaggle比赛:狗的品种
识别(ImageNet Dogs) 314
9.13.1 获取和整理数据集 315
9.13.2 图像增广 316
9.13.3 读取数据集 317
9.13.4 定义模型 318
9.13.5 定义训练函数 318
9.13.6 训练模型 319
·8· 目 录
9.13.7 对测试集分类并在Kaggle提交结果 319
小结 320
练习 320
第 10 章 自然语言处理 321
10.1 词嵌入(word2vec) 321
10.1.1 为何不采用one-hot向量 321
10.1.2 跳字模型 322
10.1.3 连续词袋模型 323
小结 325
练习 325
10.2 近似训练325
10.2.1 负采样 325
10.2.2 层序softmax 326
小结 327
练习 328
10.3 word2vec的实现328
10.3.1 预处理数据集 328
10.3.2 负采样 331
10.3.3 读取数据集 331
10.3.4 跳字模型 332
10.3.5 训练模型 333
10.3.6 应用词嵌入模型 335
小结 336
练习 336
10.4 子词嵌入(fastText) 336
小结 337
练习 337
10.5 全局向量的词嵌入(GloVe)337
10.5.1 GloVe模型 338
10.5.2 从条件概率比值理解GloVe模型 339
小结 340
练习 340
10.6 求近义词和类比词340
10.6.1 使用预训练的词向量 340
10.6.2 应用预训练词向量 341
小结 343
练习 343
10.7 文本情感分类:使用循环神经网络 343
10.7.1 文本情感分类数据集 343
10.7.2 使用循环神经网络的模型 345
小结 347
练习 347
10.8 文本情感分类:使用卷积神经网络(textCNN) 347
10.8.1 一维卷积层 348
10.8.2 时序*池化层 349
10.8.3 读取和预处理IMDb数据集 350
10.8.4 textCNN模型 350
小结 353
练习 353
10.9 编码器-解码器(seq2seq)353
10.9.1 编码器 354
10.9.2 解码器 354
10.9.3 训练模型 355
小结 355
练习 355
10.10 束搜索 355
10.10.1 贪婪搜索 356
10.10.2 穷举搜索 357
10.10.3 束搜索 357
小结 358
练习 358
10.11 注意力机制 358
10.11.1 计算背景变量 359
10.11.2 更新隐藏状态 360
10.11.3 发展 361
小结 361
练习 361
10.12 机器翻译 361
10.12.1 读取和预处理数据集 361
10.12.2 含注意力机制的编码器-解码器 363
10.12.3 训练模型 365
10.12.4 预测不定长的序列 367
10.12.5 评价翻译结果 367
小结 369
练习 369
附录A 数学基础 370
附录B 使用 Jupyter 记事本 376
附录C 使用 AWS 运行代码 381
附录D GPU 购买指南 388
附录E 如何为本书做贡献 391
附录F d2lzh 包索引 395
附录G 中英文术语对照表 397
参考文献 402
索引 407


返回顶部