重磅推荐
【产品特色】


【编辑推荐】

1.《数学之美》姊妹篇,吴军博士时隔近10年在科技领域的重磅新作。
2.李国杰院士、郑纬民院士作序推荐,快手联合创始人宿华、拼多多联合创始人陈磊倾情推荐。
3.一部通过算法例题来阐述计算思维之妙的大作。全书的例题 思考题100 ,是作者在谷歌、腾讯使用过的面试题,或是头部互联网企业、金融企业的面试题,。
4.五级工程师提升能力、不断向上发展的方法论。
5.附赠大幅思维导图折页 思维导图电子版 精美书签 增值视频 题目索引电子版。


【内容简介】

对计算机科学的掌握程度,决定了一个计算机行业从业者能走多远。在本书中,作者将人文历史与计算机科学相结合,通过一些具体的例题,分10个主题系统地讲解了计算机科学的精髓。这些例题是作者面试求职者时用到的考题,或是头部计算机公司和金融企业的面试题。
作者在书中结合自己对计算机工程师的五级分级标准,详细讲解了每类题目不同层次的解决方法、不同水平的人大约能思考到什么样的深度,深度阐述题目背后的计算机科学精髓。通过对比优化解题思路,读者不仅可以衡量自己的水平,在职业的发展道路上走得更快,更可以深刻理解并掌握计算机科学和计算思维,逐渐把握计算机科学这门艺术,获得重复性成功。
对于所有有志于了解或学习科技,特别是计算机科学的人来讲,本书不仅有助于了解计算机科学,更有助于了解 IT 产业的技术特点、培养一些特殊的思维方式、掌握信息时代特殊的做事方法,通过具体的例子,从“术”的层面获得“道”的层面的提升。


【作者简介】

吴军:学者,投资人,人工智能、语音识别和互联网搜索专家。毕业于清华大学和美国约翰·霍普金斯大学,现任丰元资本创始合伙人、上海交通大学客座教授、约翰·霍普金斯大学工学院董事等职。

吴军博士曾作为资深研究员和副总裁分别任职于Google 公司和腾讯公司。在Google公司,他和同事一同开创了搜索反作弊研究领域,成立了中、日、韩文产品部门,设计了Google 中、日、韩文搜索算法,领导了Google自然语言处理和自动问答等研究型项目,拥有近20项美国发明专利。在腾讯公司,他负责了搜索、搜索广告和街景地图等项目。作为风险投资人,他成功地投资了150家硅谷和中国的高科技企业。吴军博士对科技产业有深入的研究,是当今硅谷地区解读 IT 产业的专家。

吴军博士著有《数学之美》《浪潮之巅》《大学之路》《文明之光》《智能时代》《见识》《态度》《全球科技通史》和《信息传》等多部畅销书,并多次获得包括文津图书奖、中国好书奖、中华优秀出版物奖在内的图书大奖。


【媒体评论】

为了系统地讲解计算机与算法的精髓,提高计算机从业人员的科学品位,吴军博士近写了一本新书《计算之魂》。这本书的重点是讲算法,但不同于一般的算法教科书和科普著作,它是一部通过算法例题来阐述计算思维之妙的大作。有上进心的工程师如能花时间用心研读并争取“吃透”这本书,并做完书中的思考题,相信一定会受益终身。
--李国杰 中国工程院院士

有了对计算机科学本质的认识,一个计算机专业的学生,通过一段时间的刻意练习和经验积累,就有可能成为计算机领域的专家。而练习则需要讲究方式方法,《计算之魂》就为广大的计算机行业从业者提供了许多提升能力的有效方法。这些方法来自于作者在计算机领域多年的从业经验。相信《计算之魂》这本书能够帮助广大读者朋友在计算机领域更上一层楼,使个人取得更大的成就,并为社会做出更大的贡献。
--郑纬民 中国工程院院士

建议所有计算机从业者都读一读吴军博士的《计算之魂》和《浪潮之巅》。前者可以提升我们对问题本质的认知,后者能够帮助我们建立对科技和产业变迁大图景的认知。这两种认知能力一定能让我们受益终身。
--宿华 快手联合创始人、董事长

吴军博士是有影响力的计算机专家之一,他影响了包括我在内的很多年轻人。他的新书《计算之魂》通过具体的例题阐明了计算机与算法的精髓,把计算思维的本质内涵讲透了。
--陈磊 拼多多联合创始人、董事长


【目录】

引子 计算的本质-从机械到电子
0.1 什么是计算机
0.2 机械计算机、布尔代数和开关电路
0.3 图灵机:计算的本质是机械运动
0.4 人工智能的极限
第 1 章 毫厘千里之差-大 O 概念
1.1 算法的规范化和量化度量
1.2 大数和数量级的概念
1.3 怎样寻找好的算法
1.4 关于排序的讨论
第 2 章 逆向思考-从递推到递归
2.1 递归:计算思维的核心
2.2 遍历:递归思想的典型应用
2.3 堆栈和队列:遍历的数据结构
2.4 嵌套:自然语言的结构特征
第 3 章 万物皆编码-抽象与表示
3.1 人和计算机对信息编码的差异
3.2 分割黄金问题和小白鼠试验问题
3.3 数据的表示、精度和范围
3.4 非线性编码和增量编码(差分编码)
3.5 哈夫曼编码
3.6 矩阵的有效表示
第 4 章 智能的本质-分类与组合
4.1 这是选择分类问题
4.2 组织信息:集合与判定
4.3 B 树、B* 树:数据库中的数据组织方式
4.4 卡特兰数
第 5 章 工具与算法-图论及应用
5.1 图的本质:点与线
5.2 图的访问:遍历和连通性
5.3 构建网络爬虫的工程问题
5.4 动态规划:寻找短路径的有效方法
5.5 流量:解决交通问题的方法
5.6 配对:流量问题的扩展
第 6 章 化繁为简-分治思想及应用
6.1 分治:从O(N2) 到O(N log N)
6.2 分割算法:快速排序和中值问题
6.3 并行初探:矩阵相乘和 MapReduce
6.4 从机器学习到深度学习:Google 大脑
第 7 章 权衡时空-理解存储
7.1 访问:顺序 vs. 随机
7.2 层次:容量 vs. 速度
7.3 索引:地址 vs. 内容
第 8 章 并行与串行-流水线和分布式计算
8.1 流水线:逻辑串行和物理并行
8.2 摩尔定律的两条分水岭
8.3 云计算揭密:GFS 和 MapReduce
第 9 章 状态与流程-等价性与因果关系
9.1 从问题到状态
9.2 等价性:抽象出状态的工具
9.3 因果关系:建立状态之间的联系
第 10 章 确定与随机-概率算法及应用
10.1 信息指纹:寓确定于随机之中
10.2 随机性和量子通信
10.3 置信度:成本与效果的平衡
第 11 章 理论与实战-典型难题精解
11.1 长连续子序列问题
11.2 区间合并问题
11.3 12 球问题
11.4 天际线问题
11.5 长回文问题(Longest Palindrome Match)
11.6 计算器问题
11.7 如何产生搜索结果的摘要(Snippets Generation)
11.8 寻找和等于k 的子数组问题
索引


返回顶部