在线试读

get_product_contenthtml

 这种方法的潜在问题是报道基因染料是非序列特异的,所以反应形成的任何假的产物将导致假阳性信号。在常规热循环末端,通常用熔点(melt point)分析来解决这个问题。将反应冷却到退火温度,再缓慢地提高温度,同时连续不断地检测荧光。那么,特定的扩增子会有特征性的熔点,此时荧光会消失,而非特异性扩增子会显示出幅度大的熔点,从而使样品荧光逐渐消失。
  很多其他方法使用基于探针的荧光报道基因,这就避免了潜在的非特异信号。全程应用基于探针的方法称为荧光共振能量转移(fluorescence resonant energy transfer,FRET)法。用一个简单的术语,就是当两个荧光团靠得很近,其中一个(报道基因)的发射波长与另一个[猝灭剂(quencher)]的激发波长相匹配,那么就会发生FRET。报道基因染料发射波长发出的光子被邻近的猝灭剂染料有效俘获,而后在猝灭剂发射波长处重新发射。在这种方法的简单形式中,在预定的扩增子内,与毗邻序列同源的两个短的寡核苷酸探针被用于实验反应,其中一个探针携带报道基因染料,另一个探针携带猝灭剂染料。如果反应中形成特异的PCR产物,那么在退火步骤中,两个探针能退火到单链产物上,使报道基因和猝灭剂分子紧密靠近。与报道基因染料的激发波长反应所发出的光将引起FRET,并在猝灭剂染料的特征性发射频率处发出荧光。相反地,如果这种探针分子的同源模板(预料的PCR产物)不存在,’那么两种染料就不会共定位,而报道基因染料的激发将引起在报道基因染料的发射频率处发出荧光,如图3.20所示。与结合DNA的染料方法一样,实时PCR仪器能监测每一循环的猝灭剂发射波长,产生相似的“s”形扩增曲线。目前已经存在多种能利用这个过程探查FRET的方法,包括5′荧光核酸酶(5′fluorogenic nuclease assay)测定、分子异标(molecular beacon)法和分子蝎(molecularscorpion)法。尽管这些方法的细节不同,但是基本原理是相似的,并以相似的方式产生数据。
  PCR技术的应用非常广泛多样。在适当受控的反应中,扩增子的出现与否就能作为待检靶标模板分别存在与否的证据。这样它就可应用到医学中,如感染性疾病的探查,且在灵敏度、特异性与速率方面远远高于其他方法。因为两个引物位点是已知序列,其内部区域可以是普通长度的任何序列,这个事实使之直接应用于以下方面:在物种之间(或甚至个体之间)差异很大的区域的PCR产物可以被扩增出来进行序列分析,用于鉴定出样品模板的物种来源(或在后面例子中的个体身份)。
  ……