在线试读

get_product_contenthtml

 《无穷大谜题》: 
  经典力学的挑战是:如果你知道物体现在所处的位置,在未来某一时刻物体的位置会在哪里?——比如确定行星的运动。17世纪,艾萨克·牛顿阐明了运动定律:在没有外力作用的情况下,物体以匀速运动;反之,施加一个外力会给予物体加速度。这启发了能量的概念:比如说,和运动有关的能量叫“动能”,而物体所处状况使其有可能获得动能时,它就具有隐藏的能量或“势能”,势能和动能之和是守恒的。这就是我们很多人初接触力学时学到的定律。我们学习牛顿的方法,运用能量守恒定律,弄清楚物体是如何移动的。 
  牛顿的经典力学适用于大的物体,但是在原子尺度上,它得让位给量子力学。量子力学的初构建模仿了牛顿的方法。然而,出生于意大利的法国数学家约瑟夫一路易斯·拉格朗日在18世纪发明了另一种技巧去解决经典力学问题。1942年,费恩曼采用拉格朗日的方法,在剑桥数学家保罗·狄拉克十年前的开拓性工作的基础之上,重新构建了量子力学。 
  拉格朗日考虑的是动能和势能的差,而不是关注动能和势能的(守恒的)总和。在物体运动轨迹上任意一点的这个差值被称为拉格朗日量。然后你只需把这个路径上的拉格朗日量的数值从头至尾全部加起来。这个总和,或者“积分”,被称为作用量。一个显著的特点是,一个物体在规定时间内从一点到另一点经过的路径就是作用量小的那一条路径。 
  小作用量原理引出了拉格朗日运动方程,借助这个方程,学生们能够轻松解决经典力学里的问题,而这些问题如果使用牛顿的方法将会极其复杂。在所有情况下,这两种方法得出的结果都是一样的。 
  我们往往认为大物体的行为是显而易见的,而量子世界里物体的行为却神秘莫测。因此,弹子球以特定的方式——实际上以作用量小的方式——相互弹开,而原子束在某些方向的散射却比另一些方向更多。原子后总是分布在或密集或稀疏的区域,就像通过一个开口衍射出来的水波既有波峰也有波谷。我们像孩子一样感受宏观世界,并建立相应的直觉,但波一样的原子并不在其中。但是,作用量的概念揭示了存在于看似熟悉的现象中的意外秘密,并且使得那些原本显得神秘的现象合乎情理。聚焦于作用量使量子世界显得相对自然,而且也揭示了经典力学定律源自于作为其基础的量子力学。 
  在经典力学中,作用量的意义实际上相当怪异。一个物体真的是在首先尝试了所有可能的路径,计算了它们的作用量,选定了神奇的解决办案之后,才沿着一条的指定轨迹运动的吗?没有生命的物体像蚁群一样设法派出侦察队,这个想法似乎很不真实。然而,系统仿佛事先就知道该怎样去往它想去的地方。在没有外力作用的情况下,一个物体的自然趋势就是沿着直线运动,而不是沿着有无限多种可能的z字线或曲线运动,如此想来这确实挺神秘。费恩曼的天才之处在于,他意识到这一点对量子世界比宏观世界更有意义,并且洞见到发展量子力学的新途径。 
  量子世界之所以显得陌生而古怪,是因为粒子似乎能去到任何地方——只是机会问题。费恩曼以此作为出发点:他假设所有的路径都是可能的,不仅仅只有那些作用量小的路径。蚂蚁到处散开。费恩曼想象时间被分成片段并且设问:如果一个粒子在零时刻位于某一点,那么它在指定的未来时刻位于另一个点的概率有多大?在他的公式里,概率是一个复数的平方,被称为概率振幅,仅仅和作用量相关。“ 
  这里的思路是首先计算每个路径的作用量的值,包括那些在正常的经验里显得很荒谬的运动轨迹。在费恩曼并合了相对论的图象里,甚至包括粒子在时间里向前和往后的运动轨迹。事实上,在量子力学里,单个粒子有无穷多种可能的运动路径。但是,当一群粒子聚集在一起形成一个大的物体比如一个分子时,除了非常接近经典的那些路径以外的所有路径,它们各自的振幅会互相抵消。而对于一个真正宏观的物体,例如一个行星,只有经典力学的运动轨迹会得以幸存。 
  这些想法也许看上去很奇怪,但实际上我们是相当熟悉的:它们类似于从一个辐射源向所有方向辐射出的电磁场,其呈起伏传播的波中会出现有序的几何形状的光线。”费马在17世纪发现了一条黄金法则:在从一点到另一点的所有可能的路径中,光实际上采取的是所费时间短的那一条。15向所有方向传播的波,比方说,如果碰到一面镜子,也会从所有方向被反射回来。不同的波汇合,在一些方向叠加,在另一些方向抵消。在被镜子反射的情况下,除了沿直线到达镜子的那些波,所有叠加的波相互抵消掉了,它们会从同样的角度被反射回来。沿着这条路径,波看上去就像单纯的“光线”。